ABWR Seminar – Instrumentation & Control (I&C)

LE Fennern April 13, 2007

ABWR Control & Instrumentation

- Key design features
- Intelligent data communication functions
- Advanced safety system design
- Advanced Nuclear Boiler process control
- Advanced Main Control Room & plant automation

Key Features

- Four divisions of Reactor Protection System (RPS) (Scram)
- Four divisions of Engineering Safety Features (e.g., ECCS)
- Four divisions of ATWS feeding two divisions of SLCS (Anticipated Transients Without Scram/Standby Liquid Control System)
- Triple redundant controllers for major nuclear process control
- Redundant controllers for investment protection & Balance of Plant (BOP) control

Control and Instrumentation Improvements

- Remote I/O & fiber optic data communication
 - Eliminates 2x10⁶ m of cables and 4000m³ of cable trays
- Four channel protection systems with 2/4 logic
 - Fault-tolerant & self-checking
 - Defaults to 2/3 on bypass
 - Over 40% of sensors eliminated
- Three channel control systems with voting logic
 - Fault-tolerant & self-checking
- Improved core-wide Neutron Monitoring System
 - Start-up range & Power range all safety grade
 - Period-based protection during startup
- Automation of plant maneuvers
- Electronic on-line procedures
- Improved man-machine interface

Intelligent Data Communication Functions

- Plant-wide, redundant, data communication functions
 - Replaces field hardwired cabling
 - Incorporated separately into both nonsafety-related and safetyrelated systems
 - CIF* provides isolated communication from safety-related to nonsafety-related for display purposes
 - Multiple networks maintain necessary separation
 - Intelligent remote data acquisition units
- High speed fiber optic data transmission
 - Improved electrical separation & fire protection
 - Enhanced resistance to noise (e.g., EMI)

Intelligent Data Communications Network (cont'd)

- High reliability and maintainability
 - Self-test and diagnostics
 - Redundant, fault tolerant networks
- Based upon established ABWR technology design experience
 - Kashiwazaki 6 & Kashiwazaki 7
 - Lungmen 1 & 2

ABWR I&C Systems Architecture

* REPRESENTS ONE OF FOUR SAFETY DIVISIONS
---INDICATES CONVENTIONAL HARDWIRED CABLES

Advanced Safety System Design

- Safety System Logic & Control (SSLC)
 - Integrates reactor trip, isolation, & core cooling functions
 - Four essential divisions
- Microprocessor based logic & interlock processing
 - Efficient implementation
 - Enhanced surveillance testing
- 2/4 logic design
 - Employs sensor inputs from all four divisions for 2/4 logic at sensor level
 - Single channel trip does not cause "Half Scram"
 - Sensor bypass capability to 2/3 logic, provides on-line repair capability

LD&IS = Leak Detection & Isolation System

MSIV = Main Steam Isolation Valve

NBS = Nuclear Boiler System

NMS = Neutron Monitoring System

RCIC = Reactor Core Isolation Cooling System

RHR = Residual Heat Removal System

RPS = Reactor Protection System

RTIF = Reactor Trip & Isolation Function

SPTM = Suppression Pool Temperature Monitoring

SRV = Safety Relief Valve

1. Local area sensors include:

RPS: turbine stop valve position, turbine CV oil pressure, turbine bypass valve position, APRMs, SRNMs

NBS: MSIV position (for RTIF only), RPV pressure, water level

CRD: HCU accumulator charging water header pressure

CMS: drywell pressure

- 2. Manual Scram interrupts power to the circuit.
- 3. LD&IS resides in SSLC and shares sensors inputs with RTIF and ESF $\,$

Safety System Logic Control (SSLC) Framework

Each Subsystem has 4 digital safety-related Divisions (Class 1E) RPS is independent and separate from ESF Logics

- Reactor Protection System (RPS)
 - Basic design
 - » 2/4 logic
 - » Fail safe
 - » Deterministic
 - » Diverse from ECCS
 - Any two unbypassed same parameters exceeding limits always cause Scram with:
 - » Any single logic failure
 - » Any division of sensors bypass status
 - » Any division of logic bypass status (independent from sensor bypass)
 - » Any single power failure
 - » Any possible Main Control Room RPS control configuration
 - Each division makes a per parameter trip decision
 - Each division makes a 2/4 per parameter decision to Scram
 - Each division informs other divisions of divisional data (via communication module)
 - Two sets of load drivers each driven by four divisional trip outputs control HCU Scram solenoids

SSLC-RPS Functional Block Diagram

Safety System Logic Control (SSLC) Framework (cont'd)

- Engineering Safety Features Logics (SSLC/ESF)
 - Basic design
 - » 2/4 logic
 - » Fail As-Is
 - » Deterministic
 - » Diverse from RPS
 - Any two unbypassed same parameters exceeding limits always initiate ECCS with:
 - » Any single logic failure
 - » Any division of sensors bypass status
 - » Any single power failure
 - Each division makes a per parameter trip decision
 - Each division makes a 2/4 per parameter decision to initiate
 - Each division informs other divisions of divisional data (via communication module)
 - Design single failure proof to prevent inadvertent injection or depressurization

SSLC-ESF Functional Block Diagram

SSLC/ESF SRV Initiation Logic

Safety System Logic Control (SSLC) Framework (cont'd)

- Leak Detection and Isolation System (LDIS)
 - 4 divisions
 - Monitors leakage in the following systems and isolates systems or containment if necessary
 - » Main Steam
 - » Reactor Water Cleanup
 - » Residual Heat Removal
 - » Reactor Core Isolation Cooling
 - » Feedwater
 - » Other ECCS
 - » Other miscellaneous systems

Anticipated Transient Without Scram

- Redundant logic
 - Backup Scram signals to rods
 - Recirculation Pump speed trip/runback
 - Standby Liquid Control Injection Initiation
 - Feedwater runback

ATWS Logic - RPT

ATWS Logic – SLCS and Feedwater

NOTES:

1. SSLC DIVISION-OF-SENSORS BYPASS APPLIES TO THIS VOTER

2. SAME ARRANGEMENT AS SSLC TLU OUTPUT LOGIC BYPASS BUT PERFORMED INDEPENDENTLY

ATWS Logic – ADS Inhibit

NOTES:

1. SSLC DIVISION-OF-SENSORS BYPASS APPLIES TO THIS VOTER

Neutron Monitoring System (NMS)

NMS is comprised of 4 subsystems:

- Safety-related
 - Startup Range Neutron Monitoring (SRNM)
 - Power Range Neutron Monitoring (LPRM and APRM)
- Non safety-related
 - Automated Traversing In-Core Probe (ATIP)
 - Multi-channel Rod Block Monitoring (MRBM)

SRNM and PRNM Subsystems

SRNM

- 10 fixed detectors
- Covers from source range to >15% power
- Inputs flux and period information to RCIS*, APR, RPS and ATWS
 - » Manual range switches of previous designs eliminated

PRNM

- LPRMs 52 locations, each with 4 elevations
- LPRMs divided into 4 groups for APRM subsystem
- Each APRM group chosen to represent average core power
- Inputs flux information to RCIS, APR, RPS and ATWS
- Oscillation Power Range Monitoring (OPRM) checks for reactor instabilities

^{*} Rod Control and Information System

ABWR Ranges of Neutron Monitoring Systems

SRNM = Startup Range Neutron Monitor LPRM = Local Power Range Monitor APRM = Average Power Range Monitor

Neutron Monitoring System Improvements

Conventional BWR

ABWR

Neutron Monitoring System Schematic

NOTES:

- 1. DIAGRAM REPRESENTS ONE OF FOUR NMS DIVISIONS (MRBM IS A DUAL CHANNEL SYSTEM. THERE IS ONLY ONE IN-CORE INSTRUMENT CALIBRATION SYSTEM).
- 2. USED FOR RAPID CORE FLOW DECREASE TRIP.
- 3. SRNM AND APRM ATWS PERMISSIVE SIGNALS TO SSLC.
- 4. INTERCONNECTIONS MAY BE FIBER-OPTIC OR METALLIC.

Advanced Process Control Systems

Advanced Nuclear Boiler Process Control

- Major process control systems implemented on Fault Tolerant Digital Controllers (FTDC)
 - Feedwater Control System
 - Steam Bypass & Pressure Control System
 - Recirculation Flow Control System
 - Automatic Power Regulator System
- Triplicated microprocessor architecture
 - On-line repair capability
- Redundant communications

Advanced Nuclear Boiler Process Control (cont'd)

- Redundancy of key process inputs
- Fault tolerant output voters
 - Mid-value vote on analog outputs
 - 2/3 vote on discrete outputs
 - "Ringback" of critical outputs to detect voter failure
- Proven technology
 - Industrial controls
 - ABWR plant application
 - BWR retrofits (e.g., upgrade of turbine controls)

Advanced Process Control Systems

Rod Control and Information System (RCIS)

- Dual redundant
- Manual, semi-automatic and fully automatic modes
- Controls movement of control rods
- Contains two subsystems
 - Automatic Thermal Limit Monitor (ATLM)
 - » First line of defense against Rod Withdrawal Error (RWE)
 - » Blocks rod movement before OLMCPR is reached
 - Rod Worth Minimizer (RWM)
 - » Enforces rod sequencing rules
- Manages ARI, SCRRI, FMCRD run-in as required

BWR Control Room Comparison

_	Operating BWRs	ABWR
• Size	Large	Small
 Technology 	Analog hardware	Digital, fiber optics
 Large Mimic Displays 	None	Overall plant monitoring, industrial TVs
• Controls	Hard switches for individual equipment control	VDUs, flat control panels, system mode oriented control, limited hard switches
 Console Displays 	Dedicated hardware	flat panels
 Operators (Not including superv 	Three (typical) isors)	Two
Human Factors	Retrofitted post–TMI	Integrated in design (SPDS, Procedures on CRTs)

Lungmen Control Room Simulator

Typical Control Room Operator Displays

P&ID Display – Reactor Water Cleanup

Implementation of Automated Operations

- Top level "power generation control system" (PGCS) function implemented in plant computer system
 - Based upon proven PGCS design in recent Japanese BWR plants
- Automatic mode
 - PGCS performs plant operations
 - PGCS sends mode change commands to system controllers
 - PGCS provides prompts when operator action ("acknowledgment") required
 - Operator controls status of safety system
 - Operator monitors & controls continued progression of automation operations
- Semi-automatic mode
 - PGCS monitors plant operations & provides guidance
- Manual mode

Implementation of Automated Operations (cont'd)

- Operator can start/stop automated operation at anytime
- Operation automatically reverts to Manual mode in event of major plant upset (e.g., SCRAM)
- Individual systems monitor operational status & revert to manual if failure detected

Summary of ABWR I&C Characteristics

- Fault tolerant designs reduced chance of failure or operator error leading to an outage
- ABWR digital I&C design has been in operation & in construction
- Minimized hardwired cables/utilized fiber optics
- Proven system & hardware/software designs
- Automation implemented

